If it's not what You are looking for type in the equation solver your own equation and let us solve it.
((x^2)+4x)=300
We move all terms to the left:
((x^2)+4x)-(300)=0
We get rid of parentheses
x^2+4x-300=0
a = 1; b = 4; c = -300;
Δ = b2-4ac
Δ = 42-4·1·(-300)
Δ = 1216
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1216}=\sqrt{64*19}=\sqrt{64}*\sqrt{19}=8\sqrt{19}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-8\sqrt{19}}{2*1}=\frac{-4-8\sqrt{19}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+8\sqrt{19}}{2*1}=\frac{-4+8\sqrt{19}}{2} $
| 9x-8=12x-16 | | 8(5+4n)+11=-5(3-7n | | ((x^2)+4x)/3=300 | | (100-p)/100*(4)=0 | | 24w^2-50w+25=0 | | x+20+11x=935 | | 2x+6=6(x+1)-4x | | x+20=11x | | 24/x+2x/x-1=2x/3+3/3 | | 3-3p=-7p+7 | | 3-3p=-7+7 | | 4x+2.6x=−16 | | 3x5=9375 | | 7a+10-10a=2a | | 4.9x^2+0.25x+0.95=0 | | 3p2+10p−8=0 | | 10(200)+15x=2510 | | 62+8x=2x+4 | | 10(200)+15x=2,510 | | (24+2x)/x-1=(2x+3)/3 | | 4(2×+7)-(8x+7)=21 | | 55-35x=160 | | 2t+8-t=11 | | -2x^2+9x+5=14 | | x+4/9=-3/9 | | x/3+x/4=2+x | | 5=6x=17=3x | | 2(x-4)=5x-3x | | 2*3^(x)-7=479 | | Y-58=-3(x-5) | | 8+7^2x-5=9 | | Y-58=x-5) |